: "L’importanza di un cloud sovrano e qualificato per i fornitori della PA" La sovranità secondo Aruba.it
Ogni Gran Premio è un sistema ad altissima complessità, un millisecondo e ogni decisione possono fare la differenza. Dietro le quinte, il team IT di Formula 1 gestisce infrastrutture critiche, situazioni di back office e telemetria in tempo reale. In questo approfondimento Carlos Contreras, Ying Hou, Hin Yee Liu e Olga Miloserdova di AWS, che spiegano come l’IA generativa, insieme a strumenti come Amazon Bedrock e AWS Glue, stanno trasformando la tecnologia di gestione della F1.
Le gare di Formula 1 sono eventi ad alta complessità, in cui ogni millisecondo e ogni decisione operativa possono fare la differenza. Durante le competizioni in diretta, il team IT di F1 deve affrontare criticità che possono compromettere il funzionamento di numerosi servizi, come ad esempio il degrado delle performance di specifiche API.
Tali problematiche, infatti, hanno un impatto a cascata sui sistemi che consumano i dati, come F1 TV – il servizio che garantisce la trasmissione live, l’accesso on demand e una ricca telemetria in tempo reale. L’identificazione tempestiva della causa principale e la prevenzione di futuri malfunzionamenti richiedono un’analisi approfondita e il coordinamento di diversi reparti, soprattutto se si considera che, a causa delle restrizioni legate al calendario degli eventi e alle finestre di congelamento delle modifiche, la risoluzione di un problema critico poteva arrivare a durare fino a tre settimane, coinvolgendo team di sviluppo, operazioni, infrastruttura e networking.
Lee Wright, responsabile delle operazioni IT presso Formula 1, ricorda: “In passato avevamo un problema ricorrente con il sistema dell’API web, che rispondeva con lentezza e produceva output incoerenti. I team dedicavano circa 15 intere giornate lavorative per analizzare i log, identificare anomalie e affinare le soluzioni, procedendo in maniera iterativa durante più eventi".
Riconoscendo questa sfida come un’opportunità innovativa, F1 ha avviato una collaborazione con Amazon Web Services (AWS) per realizzare una soluzione basata sull’IA, sfruttando Amazon Bedrock. Il progetto ha portato alla creazione di un assistente per l’analisi delle cause radice (RCA), studiato per supportare ingegneri operativi, sviluppatori e specialisti di rete nella diagnostica e nella risoluzione dei problemi, riducendo al minimo l’intervento manuale sia durante che dopo gli eventi live. A supporto della soluzione è stato reso disponibile, inoltre, un repository GitHub contenente una versione generalizzata dell’applicazione chat.
Gli utenti possono interagire con l’assistente RCA attraverso richieste in linguaggio naturale, mentre il sistema, operando in background, esegue un’attenta analisi, individuando le possibili motivazioni degli incidenti e suggerendo le azioni correttive. La piattaforma, integrata con sistemi interni ed esterni, è in grado di interrogare fonti come database SQL, log di Amazon CloudWatch e strumenti di terze parti per monitorare lo stato operativo in tempo reale, rendendo lo strumento efficace per professionisti di diverse discipline.
“Grazie allo strumento RCA, il team è riuscito a identificare la causa principale e a implementare una soluzione in soli 3 giorni, includendo deployment e testing durante un weekend di gara. Il sistema non solo riduce il tempo dedicato alla risoluzione attiva, ma indirizza anche il problema al team competente, consentendo agli altri di concentrarsi su attività strategiche, quali lo sviluppo di nuovi prodotti per migliorare l’esperienza di gara”, aggiunge Wright. Il vantaggio competitivo della soluzione è evidente: l’adozione dell’IA generativa permette agli ingegneri di ottenere risposte specifiche in 5–10 secondi, riducendo il tempo iniziale di triage da oltre un giorno a meno di 20 minuti, e abbattendo il tempo complessivo per la risoluzione fino all’86%.
Durante un progetto pilota della durata di cinque settimane, in collaborazione con il team di prototipazione AWS, F1 ha dimostrato la fattibilità di automatizzare l’intero processo di troubleshooting per due sistemi critici, replicandone le fasi operative. Il team ha esaminato casi reali, delineando un diagramma di flusso che evidenziava:
Le sezioni seguenti approfondiscono i componenti chiave della soluzione: le pipeline ETL per la trasformazione dei log, l’implementazione RAG basata su agenti e l’applicazione chat.
Creazione delle pipeline ETL per la trasformazione dei dati dei log
La preparazione accurata dei dati rappresenta il fondamento per ottenere risultati di qualità in un progetto di IA. In particolare, AWS aiuta a migliorare la qualità dei dati nel tempo e Amazon CloudWatch offre visibilità sulle performance dell'intero sistema e consente di impostare allarmi, reagire automaticamente ai cambiamenti e ottenere una visione unificata dello stato operativo. Per questa soluzione, AWS Glue e Apache Spark hanno gestito le trasformazioni dei dati dai log e da altre fonti per migliorare l'accuratezza e l'efficienza dei costi del chatbot. AWS Glue aiuta a scoprire, preparare e integrare i dati su larga scala.
Il processo di trasformazione dei log si articola in tre fasi:
Sviluppo dell’assistente RCA con Amazon Bedrock Agents e Knowledge Bases
La soluzione RCA sviluppata con Amazon Bedrock Agents e Knowledge Bases consente di scomporre le richieste degli utenti in passaggi esecutivi, invocando API aziendali e accedendo a dati contestuali per produrre risposte complete e accurate. Amazon Bedrock Agents sfrutta la capacità di ragionamento dei modelli di base (FMs) per orchestrare le attività e interagire con fonti interne ed esterne. L’integrazione tra sistemi interni ed esterni permette, ad esempio, di monitorare lo stato dei database, verificare le performance tramite Datadog e generare automaticamente ticket in Jira per analisi future. Il modello Claude 3 Sonnet di Anthropic, in particolare, si distingue per la sua capacità di elaborare input complessi e interpretare formati diversificati, inclusa la gestione di date espresse in modalità differenti. Amazon Bedrock Agents integra le Knowledge Bases, fornendo un'interfaccia unica e consolidata all'utente. L'agente RCA analizza gli strumenti e i database disponibili, crea autonomamente un piano di esecuzione e restituisce una risposta finale consolidata.
Applicazione frontend: l’Interfaccia utente dell’assistente chat
L’interfaccia utente dell’assistente chat è stata realizzata con il framework Streamlit, basato su Phyton, che offre widget intuitivi e potenti per un’interazione fluida. Gli utenti possono testare le iterazioni degli agenti modificando ID e alias, visualizzare la cronologia completa della conversazione e, se necessario, esaminare la traccia dettagliata dei piani esecutivi per verificare la corretta esecuzione delle operazioni. La risposta dell'agente LLM si compone di due sezioni: sulla sinistra la risposta finale neutrale, basata sulle domande dell'utente; sulla destra la traccia dell'orchestrazione dell'agente LLM, nascosta di default per mantenere la risposta pulita e concisa. Gli utenti possono esaminare questa traccia per assicurarsi che gli strumenti corretti siano stati invocati e che i documenti necessari siano stati recuperati dal chatbot.
Un esempio applicativo riguarda la gestione delle problematiche di connessione ai database F1: l’assistente consente di verificare la compatibilità del driver e di controllare la connettività di rete di un’istanza EC2, offrendo anche la possibilità di analizzare i log di sistema per identificare e risolvere eventuali anomalie. Grazie all’integrazione con strumenti di gestione degli incidenti, come Jira, il sistema consente agli ingegneri di diagnosticare e intervenire in tempi record, automatizzando l’escalation dei casi più complessi.
Una versione generalizzata dell'applicazione è disponibile su GitHub, facilitando ulteriori sperimentazioni e adattamenti a differenti scenari d'uso. In sintesi, la collaborazione tra Formula 1 e AWS ha portato alla realizzazione di un avanzato assistente RCA basato su Amazon Bedrock, in grado di ridurre significativamente i tempi di intervento, passando da settimane a pochi minuti. Questa soluzione, che integra tecnologie all’avanguardia e processi automatizzati, permette al team F1 di concentrare le proprie risorse sull’innovazione e sul miglioramento continuo dei servizi, garantendo così un’esperienza di eccellenza per fan e partner. Un esempio emblematico del potenziale trasformativo dell’IA generativa nelle operazioni tecnologiche, capace di ottimizzare processi complessi e di offrire un vantaggio competitivo in un settore ad altissimo impatto.
Le città “full digital” sono Bergamo, Bologna, Brescia, Cagliari, Firenze, Genova, Milano, Modena, Parma, Prato, Rimini, Roma Capitale, Siena, Torino, Trento e Venezia.
05-12-2025
Il progetto mira a innovare le auto elettriche, integrando pacchi batteria e celle direttamente nel telaio tramite nuove strutture multifunzionali.
05-12-2025
Il team di Strumentazione Ottica dell’Università di Milano ha realizzato due nuovi strumenti ottici nell’ambito dei progetti di ricerca SPARK, alle isole Svalbard, e OPTAIR, in Antartide. Il primo è in grado di misurare contemporaneamente la propagazione della luce, la stratigrafia e la dimensione dei cristalli di ghiaccio nel manto nevoso. L’altro, al Polo opposto, in Antartide, monitora l’aerosol atmosferico, la sua deposizione al suolo e il suo effetto climatico.
05-12-2025
L’aeroporto civile “Gino Allegri” di Padova è l'area scelta per la presenza in zona di importanti strutture di cura e assistenza, che potranno così sperimentare collegamenti rapidi, efficienti e sostenibili. I droni impiegati sono di tipo multicotteri con massa complessiva inferiore a 25 kg: richiedono circa tre minuti per il rifornimento, hanno un’autonomia di 100 km, trasportano fino a 5 kg e, a pieno carico, consumano circa 340 grammi di idrogeno verde, con una velocità massima di 55 km/h.
04-12-2025
La Lega Italiana Fibrosi Cistica (LIFC) e Danone Nutricia presentano il volume "Nutriamo il respiro: Guida per una corretta alimentazione per i pazienti con Fibrosi Cistica”. Realizzato con il contributo non condizionato di Danone Nutricia e il supporto scientifico del Gruppo di Lavoro dei Dietisti SIFC (Società Italiana per lo Studio della Fibrosi Cistica) è pensato per aiutare gli oltre 6.000 pazienti registrati, e circa 200 nuovi casi all'anno che sono coinvolti in questa malattia genetica.
Nel 2050 si stima che la popolazione mondiale supererà i 10 miliardi di persone. Un aumento demografico di questa portata metterà sotto pressione il sistema alimentare globale, costringendo le aziende a ripensare radicalmente la catena alimentare. Però, spiegano gli esperti, diventeranno comuni alimenti in grado di assorbire gas serra dall’atmosfera, così come il cambiamento climatico trasformerà le colture regionali.
Dal settore after market alla telematica, dalla e-mobility ai servizi di engineering, includendo la fase di Testing e Validazione, la nuova proprietà punta a rilanciare l’azienda grazie alla storicità del marchio, alla qualità dei prodotti, al proprio know-how e alla messa a disposizione dei propri laboratori.
Grazie all’intelligenza artificiale, il medico, accedendo alla sua area riservata, può ora gestire in un modo più intuitivo e completo il proprio profilo inserendo o eliminando le proprie disponibilità, aggiungendo appuntamenti personali o inviando messaggi diretti ai pazienti. Proprio grazie all’AI, inoltre, tutte queste attività possono essere effettuate anche con comandi vocali.