: "I rischi del lock-in" La sovranità secondo Aruba.it
“Oggi l’AI è poco efficiente e costosa per l’ambiente. È necessario cambiare paradigma” sottolinea Vincenzo Lomonaco, tra i massimi esperti italiani di Continual Learning, ricercatore presso il Dipartimento di Informatica dell’Università di Pisa.
Creare dei microprocessori in grado di replicare i sistemi di apprendimento biologico, così da rendere l’Intelligenza Artificiale più flessibile, efficiente e sostenibile anche dal punto di vista ambientale. È questa la sfida lanciata da un gruppo internazionale di ricercatori - coordinato dal Neuromorphic AI Lab (NUAI Lab) della UTSA (University of Texas at San Antonio) - di cui fa parte anche Vincenzo Lomonaco (qui sotto nella foto), tra i massimi esperti italiani di Continual Learning, ricercatore presso il Dipartimento di Informatica dell’Università di Pisa e tra gli autori dell’articolo “Design principles for lifelong learning AI accelerators”, da poco uscito sulla prestigiosa rivista scientifica Nature Electronics.
“La fallibilità dell’Intelligenza Artificiale è ancora troppo alta e questo perché l’AI, così come la conosciamo oggi, si basa su sistemi di apprendimento automatico troppo rigidi, che la rendono incapace di affrontare condizioni nuove, non precedentemente incontrate durante il processo di addestramento – spiega Vincenzo Lomonaco – Di fatto, le facciamo apprendere una grande quantità di informazioni tutte insieme, ma ogni volta che emerge una novità su un determinato tema dobbiamo aggiornare il sistema da zero. Tutto ciò, oltre ad essere poco efficiente, ha anche dei costi altissimi, sia in termini economici che ambientali, visto l’elevato consumo di energia e le conseguenti emissioni di CO2 di questi processi”.
Aggiornare un sistema di AI, d’altronde, può arrivare a costare fino a diversi milioni euro. Mentre per avere un’idea dell’impronta ambientale dell’AI basti pensare che, secondo un recente studio dell’Università del Massachusetts, l’addestramento di diversi modelli di intelligenza artificiale di grandi dimensioni può emettere una quantità di anidride carbonica equivalente a cinque volte quella emessa da un’auto americana media durante il suo ciclo di vita, compreso il processo di produzione. Una soluzione a tutto ciò, secondo Lomonaco e gli altri ricercatori del Neuromorphic AI Lab - coordinato dalla professoressa Dhireesha Kudithipudi -, è rappresentata dall’Apprendimento Automatico Continuo (noto anche come Continual Learning o Lifelong Learning), che permetterebbe all’AI di assimilare un gran numero di conoscenze in sequenza, senza dimenticare quelle acquisite in precedenza.
Vincenzo Lomonaco assieme ai colleghi del Dipartimento di Informatica dell’Università di Pisa, Antonio Carta e Andrea Cossu, con cui collabora attivamente sui temi dell'articolo pubblicato Nature Electronics
“Per realizzare un sistema di apprendimento di questo genere è necessario modificare gli attuali paradigmi computazionali ed eliminare i vincoli infrastrutturali esistenti – prosegue Lomonaco – Per questo, con i colleghi del NUAI Lab di San Antonio, abbiamo gettato le basi di un nuovo sistema di apprendimento incrementale, basato sul co-design hardware-software. Ossia sulla progettazione simultanea di componenti hardware e software, così da dar vita ad un sistema di lifelong learning per l’AI che sia robusto e autonomo. Il tutto basato su algoritmi di nuova generazione che, lavorando in modo più simile all’intelligenza umana, permettono all’Intelligenza Artificiale di accrescere le proprie conoscenze in modo progressivo, più rapido ed efficiente, con consumi che si avvicinano a quelli di una lampadina”.
Con il 3,35% del PIL destinato alla ricerca e sviluppo, una produttività del lavoro superiore del 14,2% alla media UE e un sistema di incentivi alla ricerca tra i più competitivi (14%), l’Austria si propone oggi come destinazione privilegiata per investimenti nel settore delle batterie e della transizione energetica.
12-12-2025
Debutta la prima piattaforma a livello mondiale in grado di effettuare un confronto tra gli algoritmi di intelligenza artificiale progettati per rilevare le malattie oculari diabetiche. Questi algoritmi identificano i segni di danni ai vasi sanguigni nella parte posteriore dell'occhio.
12-12-2025
Pubblicato su Nature Communications uno studio che apre nuove strade per lo sviluppo di superconduttori ad alta velocità.
12-12-2025
Il 51% delle startup utilizza l'AI analitica, il 41% Generative AI. Ma tra gli operatori finanziari prevale cautela: il 93% dei progetti di intelligenza artificiale punta a mantenere basso il rischio per il proprio istituto.
11-12-2025
Marco Lombardi, CEO di Proger, una delle Società responsabili della progettazione del Ponte sullo Stretto di Messina, risponde alle numerose critiche sull'impatto tecnologico-ambientale ed economico del Ponte sullo Stretto.
Giovanna Labartino, Senior Economist del Centro studi di Confindustria, presentando il rapporto "IA e lavoro: nel cuore della trasformazione" sottolinea alcune questioni oggi al centro del dibattito sul tema intelligenza artificiale-occupazione.
Nasce la nuova startup Generative Bionics che ha l'obiettivo di sviluppare robot umanoidi che integrano design e intelligenza artificiale, operando con sicurezza ed efficienza nei contesti industriali.
Come la digitalizzazione e la consapevolezza sulla produzione dei propri rifiuti aziendali e la tracciabilità degli stessi aiuta l’economia circolare sul territorio nazionale può trasformare i rifiuti in risorse, riducendo costi e impatti ambientali. Come le aziende possono fare la differenza.